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SUMMARY

The problem stated in the title is studied for small values of the diffusivity ratio € and the magnetic force
coefficient B, the magnetic field being of internal origin. Uniformly valid expansions are derived for the
velocity and magnetic fields in the fluid. It is found that as B —1, the viscous layer is brought to rest and
the current in the layer is uniform and normal to the wall.

The heat uansfer is next calculated at a uniformly heated wall on the assumption of small temperature
variations. It is deduced that when B log(e™l) approaches a certain value depending on the wall temperature
etc., the thermal boundary layer separates at the stagnation point and, if dissipation is neglected, along
the whole wall.

1. Introduction

The term 'stagnation flow' refers to the steady viscous flow in the neigh-
bourhood of the forward stagnation point 0 of a bluntnosed body facing a
uniform stream. Such a flow is usually treated by approximating the actual
body surface about 0 by the tangent plane(or wall) at 0 so that the governing
equations may accommodate similarity variables. The classical solutions
in the absence of a magnetic field are those of Hiemenz and Homann [17].

MHD extensions of these flows depend on the configuration of the mag-
netic field and among recent studies (in the subsonic regime) are those
of Ludford [2] and Gribben [3]. Such studies, though largely motivated
by their relative mathematical simplicity, are also of engineering interest:
one area of interest is in the performance of a diagnostic probe inserted
in a MHD flow to detect changes in pressure, velocity, etc. Another is in
the possibility of using electromagnetic means for controlling skin friction
and heat transfer in high speed flight.

Gribben considered two stagnation flows, one plane and the other axisym-
metric, in which the magnetic field is parallel to the wall, The solution
for the plane study is very simple: in dimensionless form, the velocity
and the pressure gradient normal to the wall are identical with those in
the Hiemenz flow and the magnetic field follows by a straightforward in-
tegration; physical expressions are given by a suitable adjustment of cons-
tants,

The axisymmetric flow which Gribben describes in detail was first treated
by Axford [4] in a general way. The associated magnetic field which is
purely zonal is taken to be generated within the body but it does not vanish
atinfinity and indeed currents persists there; yet the distant flow is assumed
to be undisturbed. It seems doubtful whether such a flow can be realized
physically. Gribben derived a perturbation solution for the velocity and
magnetic fields for small €, the ratio of momentum to magnetic diffusivity,
and later [5] he used an iterative method. The situation is re-examined
here under more realistic conditions: the axial current density has a known
constant value at the wall and the distant flow is current free, as is proper
for an internally generated field. The latter condition also ensures that the
magnetic and electric fields vanish at infinity, The flow and field geometry
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is sketched in the figure below.

Fig.1, Streamlines and maguetic field lines.

The last part of this study is concerned with the temperature distribution
due to a uniformly heated wall, taking dissipative effects into account.
The numerical results derived for the wall heat flux refer to mercury and
liquid sodium.

2. The velocity and magnetic fields

In terms of cylindrical coordinates (r, 8, z), the velocity is v = (v,, 0, v,)
and the magnetic fields is H = (0, Hg, 0). Sufficiently far from the wall
(z = 0), we assume a potential flow.

v ~ (ar, 0, -2a(z - Zo)) (1)

in which a and z;, are constants. The first component of (1) will serve as
a boundary condition on the velocity. Physically, z, stands for the displace-
ment of the inviscid flow by the action of viscous 'and magnetic forces and
is to be determined as part of the solution. Dimensionless variables may
now be introduced:

g = (a/Miz, B = uA?/pal, (2a)
v, = raF'(¢), H, = rAK(E), v, = -2(an)}F(z). (2b)

I Z
The constant A is taken as known and equals half the value of the axial
current at the wall, i.e. j,(0) = 2A, The parameter B, a magnetic force
coefficient, measures the effect of the imposed current on the flow; A = (ou)!
is the magnetic diffusivity, The remaining symbols are standard, Clearly
the Homann flow is distorted by the field only if A is non-zero; this in
turn implies a conducting wall surface but, with A given, it is unnecessary
to prescribe the surface conductivity separately,
On writing the total pressure in the form

p + 3uH? = - }pa?r? - 2paP(E), (3a)

the z component of the momentum equation may be integrated to yield



Stagnation Flow and Heat Tramsfer in a Zonal Magnetic Field 155
PE) = F2 +'¢F' + constant. (3b)
The remaining MHD equations reduce to
eF''' + 2FF" - F'2 + 1 = BK?2,
"+ 2FK' = 0, (4)

with F(0) = F'(O) =0, F'leo) = 1, K(0) = 1, K({eo) = 0,

The solution is restricted to the case € «1 which is relevant to nearly
all non-astrophysical applications, We may write € = Rm/Re, where Rm =
arz/k and Re = arl/v are the magnetic_and ordinary Reynolds numbers
based on a reference length r, such that arg is of unit order. (For example,
r, may be the nose radius of the actual body). Re is usually large inpractice
and as equations (4) are exact and not boundary layer approximations, Rm
need only be 0(1) but may be larger provided that Rm « Re, Equations
(4) define a singular perturbation problem: since some surface conditions
must be dropped in solving them, they are the outer equations and are
valid in what may be called a magnetic region where the vorticity and radial
current densityare O(an) , becoming o(1) at the edge of the potential reglon
Inner variables appropriate to a viscous layer in which the vorticity is
O(Re)? and the radial current density is O(Rm)z are

1 -1
= (a/v)*z, f(n) = €*F({), k@) = KE). (5)
The corresponding inner equations and conditions are
17+ 9 - f|2 +1 = BkZ,

(6)
K" + 2efk' = 0,

and k(0) = 1, £(0) £'(0) = 0. The remaining conditions on (6) as well as
inner conditions on (4) are to be derived by a match of the two solutions,
Note that when Rm is large so that Re » Rm » 1 the magnetic reglon
contracts into a narrow layer of thickness O(x/a)z; the viscous layer is
now a sublayer of thickness 0 V/a)f and the two together form the MHD
boundary layer. It may be shown from (3) that the total pressure variation
across the whole layer is O(Rm)™!; that across the sublayer is 0(Re)! as
in ordinary boundary layer theory. \
The solution is assumed to be of the form F = F, + €?F, etc. That for
ko is simply
k, =1 (7)

and so, to this order, the axial current is constant in the viscous layer
and there is no radial current. Inspection of (5) and (7) shows that the con-
ditions F,(0) = 0 and K,(0) = 1 are necessary; the first equation of (4)
then glves

fle) = F1(0) = (1 - B)°. (8)
The solution for f  is

f, = eh(an) , (9)
where ¢= (1 - B)¥ and his the Homannfunction satisfyingh'''+ 2hh' - h'? +1 = 0-
and h(0) = h'(0) = 0, h'(e) = L. The function is tabulated in [1] Clearly

a solution exists only for <1. If 8 = 1 there is no flow in the inner layer,
all velocity and current changes taking place outside it, This situation, a
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form of boundary layer separation, is of a type met by Glauert [6] in his
study of the flow past a magnetized plate,

The basic outer equations for F, and K, must be solved numerically in
general; this will not be attempted here Instead we restrict 8 to be small
enough to permit sub-expansions F;, = F, +BF, ..., F1 =F, +BF 11 .,
etc, and- similarly for the other quantltles Since in any case B<1 this
restriction is not too severe. (It will turn out in the next section that,
with heat transfer present, B must in fact be small,)

The first set of solutions is

F, =t K, = erfcg (10)

where
o0
1

2
erfc £ = 2772 j e " dt.

3 .
It might be thought that since B = = 0 in this approx1mat10r1, K, should
also vanish, Now K = j /2A and 1t is the physical variable j, which vanishes
with A so that K represents the inviscid limit of j, 2A as A tends to
zero, From (9) we note that

foo = h(m), £y, = - &(h + nh') (11a)

and the outer expansions are

. ~@m-c¢), f. ~ -42n-c) (11Db)

00 01

where ¢ = 0.5689. The equation for ¥, is

EFL - Bl = 3 erfc?t : ' (12a)
with FOl (o) = F(')1 (©) = 0. The solution is
. _ 2
o= %71'-2[2&21(5) A erfc®E + et erfct
01
) ) (12b)
- — erfc(EV2) + (— - )} :
V2 vz :
where I) = S’_urf_c_t_dt (t > 0). {13a)
4
For small E,
I) ~ - logk - Lv - log(1+V3) + 277%f + O(E?) (13b)
where v = 0.5772 is Euler's constant and
F,, ~- 3% - 8 E%logk + 0E7). (14)

Equation (14) shows that to O0(8) the vorticity which is purely zonal and
proportional to F' is logarithmically infinite at the wall in the inviscid
flow. A similar result appeared in Ludford's study P] of plane stagnation
flow. Inspection of (14) also shows that a BEZlog term is required in
the f series in order to match with the outer solutlou This term, fj say,
is governed by the equation

1y "o 1 " -
£+ 2hf) - 2h'f) 4 207E = 0, (15a)

The asymptotic form for large 1 is f'L ~ b(n -c) and b is to be determined
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by matchmg with the outer function F,; of the next stage. The complete
expression for Fy; is not required; the inner expansion of F may be
shown to be of the form

Filo~ 27 ic logE + const.
and a match with the logarithmic term then gives
fL ~ 77‘%(77 ~¢c) as 'n — oo, (15b)

A numerical solution of (15a) with (15b) and the usual inner conditions gives
£1(0) = 0.3662, Equation (14) shows that Fj; contains a ElogE term,
ertten in inner variables, the coefficient of the part nezlog( 1) agrees
with that of 7 in (15b), The f term of Fy, in (14) and the n term of f
in (11b) are also seen to match,

The second order solution for the velocity in the absence of a magnetic
field is simply ¥,, = -c, which leads to the matching condition f} (e0) = 0,
The function flo then satlsfleq a homogeneous problem and hence I, =0.

The next function K ; determines the 0(B) effect of the flow on the current
dlstrlbutlon The governiug equation is

K" + 2EK' = 474F  e%’ (16a)
01 01 o1
where Fl is given by (12); the conditions are K (0) = K, (o) = 0, A first

inte gral is
2

-
K(‘n = ;ﬂ . [- 4ESI(E) - wi(BE® + llerfc ‘g
+ 4Ee'tzerch - 3V2E erfc(EV2) (16b)

. -2k?
+ate™ L 328 + c]
where I(E) is defined by (13a), Integration of (16b) from 0 to co gives

C=%+1 ——1—+210g\/—2-+1

V3 V3-1

= 3.8564.

The inner expansion may now be deduced to be
K.~ 0, 37508 + O(E®). (16c)

Logarithmic terms do not appear in the k series until the Be2log(el) stage
and will not concern us here. The earlier terms, k1 and kz, which are the
0(e?) and 0(¢) perturbations of the axial current in the viscous layer are
both of the form k; = a;n (i = 1,2), and matching requires that a; = K;_1(0).

Recalling that a; = aio + Bail + .., we have a;; = -277% = -1.1284 and
a,;; = 0.3750, The value of a,, depends on the equation
0
2
= A a-
Kl + 2EK! = - 47-ice 3 (17a)

with the usual condition K, (e0) = 0 and a match with k,, gives K, (0) = 0,
The solution is

- opt g
K10 = 277t¢c (e - erfckt) (17b)

and hence a, = K (0) = 4c/m = 0.7243. The functions k,, k,, and k,
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are now determined.

The solution will not be developed further and we proceed to summarize
the results obtained so far. As € is quite small (the value 10-6 being typical)
we must have 8 » € if magnetic forces are to affect the flow sensibly and
it will be assumed that B20(e%),

The magnetic and velocity field components have the following expansions
to indicated orders in B and ¢, uniformly valid in z » O:

Hy(r,z) = r A |erfc & + BK (E) + e*KlO(E)] (18)

- 2(ant [BE, ®) + etn(m) ] (192)

v (r,z) = Ta [h'(1) + B {eam + Fie) + 1}
+ Betlog(e1 ) (n)]

v, (2)

(19b)

where f01"F01 s fL, Ko, Ky are given by (11), (12), (15), (18), (17). The
corresponding expressions for the currents j, = 2Hy/r, j, = -3Arj! follow
from (18). Within the boundary layer, in particular, j, = 2A and

i (r) = Ar(a/A)? (1.1284 - 0.37508 - 0,7243¢} + ...) (20)

The current paths in the fluid are the curves r2j = const,, j, being a
composite expansion; the paths start at r = co in the magnetic region,
gradually enter into the boundary layer and into the wall and return to
r =00, The total radial current outflow from the region z » 0, z £ R say,
is 2rARZ,

The volume flow defect out of r R, z 2 0 is Q = 27aR%z  where Z, =
o0
5 (1 -v, /ar)dz is the displacement constant or thickness occurring in (1).
0
Using (12) and recalling that F;, = -c we have
z; = (a/x)F (0, 08268 + 0.5689%% + ...). (21)
When Rm = ar?/x is 0(1) (see remarks below (4)) and 8 = 0(e%), the dis-
placement effect due to magnetic and vislcous forces is comparable and
additive but at a smaller Rm and for 8 > 0(ez), (21) shows that a relatively
extensive magnetic region can be accommodated between the wall and the
potential region,

The last quantity of interest is the wall stress. There is no Maxwell
component; the skin friction T may be computed from (9) and (15). The
result for small B is

T = pr(vad): [1.3119(1 - B)‘%r + 0, 3662[36%10g(€'1) + :l (22)

The foregoing analysis pre-supposes a conducting wall and a narviscous
layer along it, We recall that the solution cannot be developed for B > 1.,
As B — 1, the field becomes strong enough to arrest the flow in this layer:
in this stagnant fluid the current is uniform and axial, and the magnetic
force is balanced by the radial pressure gradient.

3. Heat transfev from an isothevmal wall

Let the wall surface z = 0 be maintained at a uniform temperature TW
and let Te(< T,,) be the temperature of the external flow. Then provided
that (T - Ty )/Teo and the external Mach number are small, the energy and



Stagnation Flow and Heat Transfer in a Zonal Magnetic Field 159

momentum equations are uncoupled. For liquids (with which we are coneerned
here) the Mach condition is irrelevant but small relative temperature dif-
ferences are necessary in order to preserve constancy of properties, es-
pecially the viscosity, Since the expansion coefficient is small, being of
the order of 10 ™% per degree C for mercury at 15°C and liquid sodium at
200°C, the pressure term may be dropped from the energy equation which
in steady flow becomes

P (v. V)T = kT + & + §%/o (23)

where T is the liquid temperature, c, is the specific heat, k; the thermal
conductivity and the last two terms represent viscous andohmic dissipation
respectively.

For conducting liquids the Prandtl number Pr is rather small (typically
about 0.01) but may be taken to be 0(1) compared with the much smaller
parameter €, Accordlngly the thermal boundary layer will be comparable
in thickness with the viscous la %yer (though actually thicker by about Pr-%
times) and each is only about €z as thick as the inviscid-magnetic reglon
referred to in section 2, In this region thermal conduction and viscous
dissipation are negligible, being 0(€¢), but not ohmic dissipation which is
0(B) and we have assumed that 8 > 0(62). Hence to a first approximation
the heat balance outside the viscous layer is between convection and ohmic
dissipation so that (23) reduces to

pc (V. V)T = jg 2lo (24)

the su.lix o signifying that outer variables of a basic solution are being
referred to., Since the external temperature is not attained at the boundary
layer edge but at the outer edge, the condition proper to (24) is T = T
atz = oo and it is sufficient, Outer conditions for the boundary layer ap-
proximation of (23) are to be deduced from the inner expansion of (24),
the remaining condition being the prescribed wall temperature.

A suitable dimensionless form for T is

2

a
T - Tw = (T, - Tw)Lo(E) + =M, (E). (25)
Substituting in (24) gives
2 .
F, L, + BWK; = 0, (262)
1 2 _
FO Mb - FO’ Mo + EBK'O =0 (26b)

with Lj(o) = Mglo) = 0, The functions F;, and K, representing the axial
veloc1ty and current 1n the inviscid flow have appeared earlier, The para-
meter W = Za}t/c - T,), of the form of an Eckert number, is taken
to be 0(1).

Note that non-trivial solutions for L,, M, are due to the ohmic forcing
;c;l(;ms in (26). Expanding L, =L, + 8L, etc., we have that Ly, = My, =0

Ly, = W _ft—"itc—i at (¢ > o). (273)

The small £ expansion is

L, ~-W [1og§ +d+ O(Elogﬁ):] (27b)
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T/4
where d = %y + log4 + 47t 50 logcos tdt = 1.5649. On the other hand
(26b) shows that M, is finite at the origin, in fact My, (0) = 2/m, .

In terms of inner variables 1,(n) = L (&), m,(n) = M, () wheren = (a/v)iz
as before, equation (23) reduces to the thermal boundary layer equations:

Proily + 2f 11 + 28W = 0, (28a)

=11 1 ! 12 12
Pr mo+2f0mO -2fm  + £ +3k1 =0 (28D)
with 15(0) = 1, my0) = 0; £, is given by (9) and k; is referred to below
(16c). The basic variables 1, m,, satisfy (28) with 8 = 0 and f, replaced
by fy,, or h. The boundary conditions are 1,,(0) = 1, lj5(0) = m(0) =
mg,(e) = 0. The dimensionless wall heat flux components in the absence
of a magnetic field are 1, (0) and mBO(O), the latter being the contribution
from viscous dissipation The computed values at Pr = 0, 025(mercury),
0. 0075 (liquid sodium) ‘are shown in the Table below. )

Equation (27b) shows that a logarlthmlc stage, Blog(e 1), 1s already present
in the 1 series and the expansions are 1, = 100 + Blog(e 1)1 LT BLy e,
m, = m00 + Bm + ... The equation for 1,

1+ 2Prh1' =0 ‘ (29a)

with 1 (0) = 0 and the matchmg condition 1 (ee) = 3W deduced from (27b).
L
We find that

11(0) = -3Wo . (29b)
where 9 = 1:)0(0), a function of Pr, Next we have

1 -111 [ 1

s Pr 1' + h1 (‘f01100 + W) (30a)
with 1 _(0) = O, 10] ~ -W(d + logn) as n—c0; h, f01 are given by (11).
It can %)e shown that

1,(0) = 8(qW - 3) _ (30D)
Yl

where q=d+lim [10gn - 2Pr| X( 5 X(u) du dt:| and X(t) = exp(2Pr | h(u)du).
N—roa 0 0

The function m,, is given by

1 -1 + 1 _ [ P t _ o + 'n'n +

s Pr m hrn01 h m (f01m00 f01m00 h f 2/m) (31)
with m , (0) = 0 and m, o) = 2/n. The results k, = -27 -+ and M, (0) = 2/7
have beén used here, Equatlons (30) and (31) were integrated numerlcally
and the results are tabulated below,

TABLE
Pr 9= 1(‘)0(0) 1L(0)/e 1(‘)1_(0)/9 m(')O(O) m(')l(O)
0.025 -0,1627 -t W 2.55W- & 0.0182 0.461
0.0075 -0, 0925 -iw 3. 15W- & 0.0057 0.272

The heat transfer at the wall is given by

/azag (r,0) =(T, - Tx)® [1 ) B{%Wlog(e'?) QW ﬂ]

+ a?r? (32)

{mys(0) + 8 my (0.
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The Table shows that the second curly bracket in (32) is positive so that
the applied field increases the d1551pat1ve contribution to the heat transfer
for r » 0. Next, since € = 1077 for mercury and 10™ for sodium, the
first curly bracket also remains positive for all W and we conclude that
when Blog(e-l) < 0(1) the applied field de(reascs the heat transfer at the
stagnation point 0 itself and, provided that a?r? /<, . - T,)<0(1), also on
a disk of radius r centred at 0.

As (increases with the strength of the applied field, Blog(e-l) = s say,
will become O0(1) and the 1, series will fail to be asymptotic. Physically
we can expect s to attain a critical value at which the thermal layer is
disrupted, in the sense that the heat flux vanishes at the stagnation point
and, if dissipation is ignored, along the entire wall. An analogous situation
with the velocity boundary 1ayer arose in [6]. When s is 0(l) the relevant
parameter is € = 1/log(e™!) since B is then 0(€), and to find the critical
value of s we seek a series solution of (26a) and (28a) in terms of €, In
general a smooth development would require a modified set of equations
but here this is unnecessary and indeed compatibility with the solution of
Section 2 and the temperature condition at the wall will not permlt a change
of variables, The dominant term in the 1j,(0) expansion (1 - 3sW) and hence
the flux vanishes at 0 when s = 2/W, Alternatively, consider formal series
of the type 1,(n,s) = 1,,(N,s) * 61 1M, 8) etc, Then L oo, = 0 as before;
Ty satisfies the same equation and surface condition as 1,, but we must
insist on the outér condition 1 (o) = o, where a’o is an 0(1) parameter
depending on s. It is'easily shown that 1} o(0,8) = (1 - @ )6 and hence the
flux at’' 0 remains negative provided that ¢, < 1. Guided by our earllor
solution (27b) we deduce that L, ~-sW(d + logg) = -sW(d + logn - 3€°1)
in inner variables. The first two terms are the outer expansion of 1, but
the last term remains unmatched if a, is zero, Matching 1 With L, t &L

ol
gives

@, =0+ E(3sWE&l) and hence s = 20, /W < 2/W,

“he field strenght is therefore limited by the inequality

cp(T, = Ta)

g o< 21 =
atlog(e ™)

As the latter value is reached, the thermal layer separates i,e. the heat
transfer is reduced to zero at the stagnation point and, if dissipation is
neglected, on the entire wall surface.
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