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MAGNETIC FIELD 
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SUMMARY 

The problem stated in the title is studied for small values of the diffusivity ratio �9 and the magnetic force 
coefficient 13, the magnetic field being of internal origin. Uniformly valid expansions are derived for the 
velocity and magnetic fields in the fluid. It is found that as 13--.--1, the viscous layer is brought to rest and 
the current in the layer is uniform and normal to the wall. 

The heat transfer is next calculated at a uniformly heated wall on the assumption of small temperature 
variations. It is deduced that when 13 log(e -1) approaches a certain value depending on the wall temperature 
etc. ,  the thermal boundary layer separates at the stagnation point and, if dissipation is neglected, along 
the whole wall. 

1. Introduction 

The term 'stagnation flow' refers to the steady viscous flow in the neigh- 
bourhood of the forward stagnation point 0 of a bluntnosed body facing a 
uniform stream. Sueh a flow is usually treated by approximating the aetual 
body surface about 0 by the tangent plane(or wall) at 0 so that the governing 
equations may accommodate similarity variables. The elassieal solutions 
in the absence of a magnetic field are those of Hiemenz and Homann ~i]. 

MHD extensions of these flows depend on the configuration of the mag- 
netic field and among recent studies (in the subsonie regime) are those 
of Ludford [2~ and Gribben [3~. Such studies, though largely motivated 
by their relative mathematical simplicity, are also of engineering interest: 
one area of interest is in the performanee of a diagnostic probe inserted 
in a MHD flow to detect changes in pressure, veloeity, etc. Another is in 
the possibility of using electromagnetic means for controlling skin friction 
and heat transfer in high speed flight. 

Gribben considered two stagnation flows, one plane and the other axisym- 
metric, in whieh the magnetic field is parallel to the wall. The solution 
for the plane study is very simple: in dimensionless form, the velocity 
and the pressure gradient normal to the wall are identical with those in 
the Hiemenz flow and the magnetic field follows by a straightforward in- 
tegration; physical expressions are given by a suitable adjustment of cons- 
tants. 

T h e  a x i s y m m e t r i c  f l o w  w h i c h  G r i b b e n  d e s c r i b e s  i n  d e t a i l  w a s  f i r s t  t r e a t e d  
b y  A x f o r d  [ 4 ]  i n  a g e n e r a l  w a y .  T h e  a s s o c i a t e d  m a g n e t i c  f i e l d  w h i c h  i s  
p u r e l y  z o n a l  i s  t a k e n  t o  b e  g e n e r a t e d  w i t h i n  t h e  b o d y  b u t  i t  d o e s  n o t  v a n i s h  
a t  i n f i n i t y  a n d  i n d e e d  c u r r e n t s  p e r s i s t s  t h e r e ;  y e t  t h e  d i s t a n t  f l o w  i s  a s s u m e d  
t o  b e  u n d i s t u r b e d .  I t  s e e m s  d o u b t f u l  w h e t h e r  s u c h  a f l o w  c a n  b e  r e a l i z e d  
p h y s i c a l l y .  G r i b b e n  d e r i v e d  a p e r t u r b a t i o n  s o l u t i o n  f o r  t h e  v e l o c i t y  a n d  
m a g n e t i c  f i e l d s  f o r  s m a l l  ~0 t h e  r a t i o  o f  m o m e n t u m  to  m a g n e t i c  d i f f u s i v i t y ,  
a n d  l a t e r  [5"] h e  u s e d  a n  i t e r a t i v e  m e t h o d .  T h e  s i t u a t i o n  i s  r e - e x a m i n e d  
h e r e  u n d e r  m o r e  r e a l i s t i c  c o n d i t i o n s :  t h e  a x i a l  c u r r e n t  d e n s i t y  h a s  a k n o w n  
c o n s t a n t  v a l u e  a t  t h e  w a l l  a n d  t h e  d i s t a n t  f l o w  i s  c u r r e n t  f r e e ,  a s  i s  p r o p e r  
f o r  a n  i n t e r n a l l y  g e n e r a t e d  f i e l d .  T h e  l a t t e r  c o n d i t i o n  a l s o  e n s u r e s  t h a t  t h e  
m a g n e t i c  a n d  e l e c t r i c  f i e l d s  v a n i s h  a t  i n f i n i t y .  T h e  f l o w  a n d  f i e l d  g e o m e t r y  
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i s  s k e t c h e d  i n  t h e  f i g u r e  b e l o w .  

Z 
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F 

Fig. 1. Streamlines and magnetic field lines. 

The last part of this study is concerned with the temperature distribution 
due to a uniformly heated wall, taking dissipative effects into account. 
The numerical results derived for the wall heat flux refer to mercury and 
liquid sodium. 

2. The velocity and mag~etic fields 

Interms of cylindrical coordinates (r, @, z), the velocity is v = (v r , 0, Vz) 
and the magnetic fields is H = (0, Ha, 0). Sufficiently far from the wall 
(z = 0), we assume a potential flow. 

V ~ ( a r ,  0,  - 2 a ( z  - Zo) ) (i) 

in which a and z 0 are constants. The first component of (i) will serve as 
a boundary condition on the velocity. Physically, z 0 stands for the displace- 
ment of the inviseid flow by the action of viscous and magnetic forces and 
is to be determined as part of the solution. Dimensionless variables may 
now be introduced: 

= ( a / k ) � 8 9  t3 = taA 2 / p a  2, 

v r = r a F ' ( ~ ) ,  H o = r A K ( ~ ) ,  v z = - 2 ( a k ) � 8 9  

( 2 a )  

(2b) 

The constant A is taken as known and equals half the value of the axial 
current at the wall, i.e. jz(0) = 2A. The parameter ~, a magnetic force 
coefficient, measures the effect of the imposed current on the flow; X = (~/~)-I 
is the magnetic diffusivity. The remaining symbols are standard. Clearly 
the Hornann flow is distorted by the field only if A is non-zero; this in 
turn implies a conducting wall surface but, with A given, it is unnecessary 
to preseribe the surface conductivity separately. 

On writing the total pressure in the form 

1 2 p + ~t~H o = - � 8 9  2 - 2 p k a P ( [ ) ,  (3a )  

the z component of the momentum equation may be integrated to yield 
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P ( [ )  = F 2 + ' o F '  + c o n s t a n t .  (3b) 

The remaining MHD equations reduce to 

eF"' + 2FF" F '2 + I : /3K 2, 

Z '  + 2 F K '  = 0, (4) 

w i th  F(0)  : F ' ( 0 )  = 0, F ' ( ~ )  : 1, K(0) : 1, K(~)  = 0. 
T h e  s o l u t i o n  i s  r e s t r i c t e d  to the  c a s e  e <<1 w h i c h  i s  r e l e v a n t  to n e a r l y  

al l  n o n - a s t r o p h y s i c a l  a p p l i c a t i o n s .  We m a y  w r i t e  e = R m / R e ,  w h e r e  R m  = 
ar02/k  and  Re = at02//1 a r e  the  m a g n e t i c  and  o r d i n a r y  R e y n o l d s  n u m b e r s  
b a s e d  on a r e f e r e n c e  l e n g t h  r 0 s u c h  t ha t  aro  2 i s  of  un i t  o r d e r .  ( F o r  e x a m p l e ,  
r 0 m a y  be the n o s e  r a d i u s  of  the a c t u a l  b o d y )  Re  i s  u s u a l l y  l a r g e  i n p r a e t i c e  
and  a s  e q u a t i o n s  (4) a r e  e x a c t  and  not  b o u n d a r y  l a y e r  a p p r o x i m a t i o n s ,  R m  
n e e d  o n l y  be  0(1) but  m a y  be l a r g e r  p r o v i d e d  tha t  R m  << Re .  E q u a t i o n s  
(4) de f ine  a s i n g u l a r  p e r t u r b a t i o n  p r o b l e m :  s i n c e  s o m e  s u r f a c e  c o n d i t i o n s  
m u s t  be  d r o p p e d  in  s o l v i n g  t h e m ,  t h e y  a r e  the  o u t e r  e q u a t i o n s  and  a r e  
v a l i d  in wha t  m a y  be c a l l e d  a m a g n e t i c  r e g i o n  w h e r e  the  v o r t i c i t y  and  r a d i a l  
e u r r e n t  d e n s i t y a r e  0 (R m )} ,  b e c o m i n g  o(1) a t  the  edge  of  the  p o t e n t i a l  r e g i o n .  
I n n e r  v a r i a b l e s  a p p r o p r i a t e  to a v i s c o u s  l a y e r  in w h i c h  the  v o r t i e i t y  is  
0(Re)} and the r a d i a l  c u r r e n t  d e n s i t y  is  0(Rm)�89 a r e  

1 

= ( a /v ) � 89  f@/) = e - ~ F ( ~ ) ,  k@]) : K(~).  (5) 

The corresponding inner equations and conditions are 

f'" + 2ff" _ f,2 + 1 = /~k 2, 

k" + 2cfk' = 0, 
(6) 

and k(0) = I, f(0) = f'(0) = 0. The remaining conditions on (6) as well as 
inner conditions on (4) are to be derived by a match of the two solutions. 

Note that when Rm is large so that Re >> Rm >> i, the magnetic region 
contracts into a narrow layer of thickness 0(k/a)i; the viscous layer is 
now a sublayer of thickness 0(u/a)�89 and the two together form the MHD 
boundary layer. It may be shown from (3) that the total pressure variation 
across the whole layer is 0(Rm)-i; that across the sublayer is 0(Re) -I as 
in ordinary boundary layer theory. 

The solution is assumed to be of the form F = F 0 + 6IF I etc. That for 
k 0 is simply 

k o : 1 (v) 

and so, to this order, the axial current is constant in the viscous layer 
and there is no radial current. Inspection of (5) and (7) shows that the con- 
ditions F 0(0) = 0 and K0(0 ) = 1 are necessary; the first equation of (4) 
then gives 

f'0(~o) : F'0(o): (i- ~)~. (8) 

The solution for f0 is 

f0 : ~h(~) (9) 

where~:(l -[{)�88 andhistheHomannfuncdonsatisfyingh"'+ 2hh' - h'2 + 1 : 0- 
and h(0) = h'(0) = 0, h'(r = i. The function is tabulated in [i]. Clearly 
a solution exists only for ~<i. If ~ : 1 there is no flow in the inner layer, 
all velocity and current changes taking place outside it. This situation, a 
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f o r m  of b o u n d a r y  l a y e r  s e p a r a t i o n ,  is  of a type  m e t  by  G l a u e r t  [ 6 ]  in h is  
s t u d y  of  the f low p a s t  a m a g n e t i z e d  p l a t e .  

The  b a s i c  o u t e r  e q u a t i o n s  f o r  F 0 and K~ m u s t  be s o i v e d  n u m e r i e a l l y  in 
g e n e r a l ;  th i s  wi l l  not  be a t t e m p t e d  h e r e .  InUstead we r e s t r i c t  ~ to be s m a l l  
enough  to p e r m i t  s u b - e x p a n s i o n s  F 0 = F00 §  + . . . .  F 1 = F10 + ~ F l l  + . . . .  
e t e .  a n d  s i m i l a r l y  f o r  the o t h e r  q u a n t i t i e s .  S inee  in any  c a s e  ~<1,  th i s  
r e s t r i c t i o n  is  not  too s e v e r e .  (It wi l l  t u r n  out in the nex t  s e c t i o n  tha t ,  
wi th  he a t  t r a n s f e r  p r e s e n t ,  ~ m u s t  in  f a c t  be s m a l L )  

T h e  f i r s t  s e t  of sol~ations is  

F00 = ~, K00 = erfc% (10) 

w h e r e  

= ~ 12 e r f c  ~ 21r-�89 e-  dt. 

It  m i g h t  be thought  t ha t  s i n c e  ~ = A = 0 in th i s  a p p r o x i m a t i o n ,  K00 shou ld  
a l s o  v a n i s h .  Now K = j z /2A and i t  i s  the p h y s i c a l  v a r i a b l e  J z wh ich  v a n i s h e s  
wi th  A so  tha t  K00 r e p r e s e n t s  the i n v i s c i d  l i m i t  of j z / 2 A  as  A t en d s  to 
z e r o .  F r o m  (9) we no te  t h a t  

f00 = h(r~), f01 = - �88 + t/h') (11a) 

and the o u t e r  e x p a n s i o n s  a r e  

f00 ~ (r~ - c) ,  f01 "~ - �88 - c) ( l l b )  

w h e r e  c = 0 .5~89 .  T h e  e q u a t i o n  f o r  F0L i s  

IT I _--_ ~F01 - F0I �89 e r fc2~  (12a) 

wi th  F01 (0) = F01 (oo) = 0. T h e  s o l u t i o n  is  

= 1 -�89 2 Fol g~r E2~ I(~) - =�89 erfe~% + e-~2erfe~ 

i erfc(~V~) +( 1 I)] (12b) 

V~ V5 

w h e r e  I(~) = S~ e - t2 te r fe  t dt (~ > 0). (13a) 

For small ~, 

I(~) logl~ - "~ - 7 7  - log(l+V'2) + 2~r-�89 + 0(~ 2) (13b) 

w h e r e  7 = 0 .5772  is  E u l e r ' s  c o n s t a n t  and 

Fo~ ~ - �89 - ~-~ ~log~ + 0(~). (14) 

Equation (14) shows that to 0(fi) the vorticity which is purely zonal and 
proportional to F" is logarithmically infinite at the wall in the inviseid 
flow. A similar result appeared in Ludford's study [-2] of plane stagnation 
flow. Inspection of (14) also shows that a ~e�89 is required in 
the f s e r i e s  in o r d e r  to m a t c h  wi th  the o u t e r  so lu t i on .  T h i s  t e r m ,  fg s a y ,  
is g o v e r n e d  by  the e q u a t i o n  

f'" + 2hf~ - 2h'f L + 2h"f L = O. (15a) 
L 

I Tlae a s y m p t o t i c  f o r m  f o r  l a r g e  r~ is  fL "" b(~ - e) and b is  to be d e t e r m i n e d  
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by matching with the outer function Fit of the next stage. The complete 
expression . for FIt is not required; the inner exp~insion of F~' i may be 
shown to be of the form 

F' ~ 27r-ic log~ + const. 
II 

and a match with the logarithmic term then gives 

f' ~ Ir-�89 - c) as ~ ~ oo. (15b) 
L 

A numerical solution of (15a) with (15b) and the usual inner conditions gives 
f'~(0) = 0.3662. Equation (14) shows that F~I containsl a ~log~ term. 
Written in inner variables, the coefficient of the part Nc~log(e -I) agrees 
with that of ~l in (15b). The ~ term of F01 in (14) and the N term of f01 
in (llb) are also seen to match. 

The second order solution for the velocity in the absence of a magnetic 
field is simply F 1 = -c, which leads to the matching condition f'10(oo) = 0 
The function fl0 then satisfies a homogeneous problem and hence f,~ - 0. 

The next function K01 determines the 0(/~) effect of the flow on the ~urrent 
distribution. The governing equation is 

K" + 2~K' = 4~-�89 e (16a) 
01 01 01 

where F01 is given by (12); the conditions are K0i(0 ) = K01(oo) = 0. A first 
integral Is 

K' = e-~2 [- 4~31(~) - ~(6~I ~ 2 + l)erfe2~ 
Ol 3~ k. 

+ 4~e-~2erfc~ - 3V2~ erfc(~V'2) (16b) 

+ ~"�89 e "2~2 - 3(2-V~)~ + C ] 

where !(~) is defined by (13a). Integration of (16b) from 0 to ~ gives 

m" I d-2+l 
C = ~ "  + I - + 2 l o g ~  = 3. 8564. 

~"3-1 

The inner expansion may now be deduced to be 

K "" 0. 3750~ + 0(~, 3) (16e) 
01 

Logarithmic terms do not appear in the k series until the ~c21og(e -I ) stage 
andlwill not concern us here. The earlier terms, k i and k2, which are the 
0(c ~) and 0(e) perturbations of the axial current in the viseous layer are 
both of the form k i = ai~ (i = i, 2), and matching requires that a i = Ki_i(0). 
Recalling that a i = ai0 + ~aii + .., we have at0 = -2=-�89 = -1.1284 and 
aii = 0. 3750. The value of a20 depends on the equation 

K" + 2~K'1o - 4~r'�89 e -~12 10 = (17a) 

with the usual condition Kl0(Oo ) = (J and a match with ki0 gives Ki0(0) = 0. 
The solution is 

KIo 2r'�89 (e-~; 2 = - erfe ~) (17b) 

and hence a2o = K~o(0 ) = 4e/,v = 0.7243�9 The functions klo , kl) and k2o 
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a r e  now d e t e r m i n e d .  
T h e  s o l u t i o n  wi l l  not  be d e v e l o p e d  f u r t h e r  and we p r o c e e d  to s u m m a r i z e  

the r e s u l t s  o b t a i n e d  so  f a r .  As  r is  qu i te  s m a l l  ( the v a lu e  10 -6 b e i n g  typ ica l )  
we m u s t  ha ve  fl >> c i f  m a g n e t i c  f o r c e s  a r e  to a f f e c t  the f low s e n s i b l y  and 
i t  wi l l  be a s s u m e d  tha t  ~>/0(c�89 

T h e  m a g n e t i c  and v e l o c i t y  f i e ld  c o m p o n e n t s  have  the f o l l o w i n g  e x p a n s i o n s  
to i n d i c a t e d  o r d e r s  in /3 and e, u n i f o r m l y  va l id  in z >t 0: 

= rA __[erfc~ + /3Koi(~ ) + c�89 H 0 ( r ,  z) (18) 

Vz(Z) = - 2(ak)�89 + e�89 (19a) 

= r a  _l-h'(rl) + 13 ~f~l(rl) + F;l(l~) + �89162 V (r,z) 
(195) 

+ /3cilog(e-1 )f~ (,7)] 
w h e r e  f01 , .F01 ,  fL' K01' K10 a r e  g iven  by (11), (12), (15), (16), (17). The  
c o r r e s p o n d i n g  e x p r e s s i o n s  f o r  the c u r r e n t s  Jz = 2 H 0 / r ,  Jr = - �89  fo l low 
f r o m  (18). Wi th in  the b o u n d a r y  l a y e r ,  in p a r t i c u l a r ,  Jz = 2A and 

j r ( r )  = A r ( a / k )  �89 (1 .1284  0.3750/3 - 0 .7243r  �89 + . . . )  (20) 

T h e  c u r r e n t  pa th s  in the f lu id  a r e  the c u r v e s  r2 jz  = c o n s t . ,  jz b e in g  a 
c o m p o s i t e  e x p a n s i o n ;  the pa ths  s t a r t  at  r = c~ in the m a g n e t i c  r e g i o n ,  
g r a d u a l l y  e n t e r  in to  the b o u n d a r y  l a y e r  and into the wal l  and r e t u r n  to 
r =oo. The  to ta l  r a d i a l  c u r r e n t  ou t f low f r o m  the r e g i o n  z >/ 0, z ,.< R s ay ,  
is 2~AR 2 . 

The volume flow defect out of r ~R, z >i 0 is Q = 2~raR2z 0 where z 0 = 

"~(I - /ar)dz is the displacement constant or thickness occurring in (i). V r 

Using (12) and recalling that Fl0 = -c we have 

z 0 = (a/X)- �89 + 0.5689~ �89 + ...). (21) 

When Rm = ar2/X is 0(i) (see remarks below (4)) and /3 = 0(e�89 the dis- 
placement effe~ due to magnetic and viscous forces is comparable and 
additive but at a smaller Rm and for /3 >i 0(r189 (21) shows that a relatively 
extensive magnetic region can be accommodated between the wall and the 
potential region. 

The last quantity of interest is the wall stress. There is no Maxwell 
component; the skin friction "r may be computed from (9) and (15). The 
result for small /3 is 

3 

r 0 r ( v a  )~ 1. 3119(1 /3)~ + 0. 3662/3r log(e -1 ) + . . . .  (22) 

The  f o r e g o i n g  a n a l y s i s  p r e - s u p p o s e s  a c o n d u c t i n g  wal l  and a n a r v i s e o u s  
l a y e r  a l ong  it .  We r e c a l l  tha t  the s o l u t i o n  can n o t  be d e v e l o p e d  f o r  /3 > 1. 
As /3 ----* 1, the f i e ld  b e c o m e s  s t r o n g  enough  to a r r e s t  the f low in th i s  l a y e r :  
in th i s  s t a g n a n t  f luid the c u r r e n t  is  u n i f o r m  and ax ia l ,  and the m a g n e t i c  
f o r c e  is  b a l a n c e d  by the r a d i a l  p r e s s u r e  g r a d i e n t .  

3. Heat t rans fe r  f r o m  an isothermaZ wall 

Let the wall surface z = 0 be maintained at a uniform temperature T 
and let T~o(< T w) be the temperature of the external flow. Then provideWd 
that (T w - T~o)/T~o and the external Maeh number are small, the energy and 
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m o m e n t u m  equat ions a re  uncoupled.  F o r  l iquids (with which we a re  concerned  
here)  the Mach condit ion is i r r e l e v a n t  but sma l l  r e l a t ive  t e m p e r a t u r e  dif-  
f e r e n c e s  a re  n e c e s s a r y  in o r d e r  to p r e s e r v e  cons tancy  of p r o p e r t i e s ,  e s -  
pec ia l ly  the v i scos i ty .  Since the expansion coeff ic ient  is sma l l ,  being of 
the o r d e r  of 10 ~ pe r  degree  C for  m e r c u r y  at 15~ and l iquid sodium at 
200~ the p r e s s u r e  t e r m  m a y  be dropped f r o m  the ene rgy  equat ion which 
in s t eady  flow becomes  

pCp(V.V)T = kTV2T + (1) + j2/cr (23) 

where  T is the l iquid t e m p e r a t u r e ,  cp is the specif ic  heat ,  k T the t h e r m a l  
conduct iv i ty  and the l a s t  two t e r m s  r e p r e s e n t  v i scous  and ohmic d i ss ipa t ion  
r e spec t i ve ly .  

F o r  conduct ing l iquids the P rand t l  number  P r  is r a t h e r  sma l l  ( typica l ly  
about 0.01) but m a y  be taken to be 0(1) compared  with the much  s m a l l e r  
p a r a m e t e r  ~. Accord ing ly  the t he rma l  boundary  l a y e r  will  be comparab le  
in th ickness  with the v iscous  la t ter  (though ac tua l ly  th icker  by about Pr-�89 
t imes)  and each is only about e~ as thick as the i nv i s c id -magne t i c  region  
r e f e r r e d  to in sec t ion  2. In this region  t h e r m a l  conduction and v iscous  
d i ss ipa t ion  a re  negl igible ,  being 0(c), but not ohmic d i ss ipa t ion  which is 
0(/~) and we have a s s u m e d  that  /3 >/ 0(~�89 Hence to a f i r s t  approx imat ion  
the hea t  balance outs ide the v iscous  l a y e r  is  between convect ion and ohmic 
d i ss ipa t ion  so that (23~ reduces  to 

~o/~ pcp(v 0 . V)T = "2 (24) 

the su~2ix o s igni fy ing  that  ou ter  va r i ab l e s  of a basic  solut ion a re  being 
r e f e r r e d  to. Since the ex te rna l  t e m p e r a t u r e  is not a t ta ined at the boundary  
l a y e r  edge but at the outer  edge, the condit ion p rope r  to (24) is T = T~ 
at z = ~ and it is suff ic ient .  Outer  condit ions for  the boundary  l a y e r  ap-  
p rox ima t ion  of (23) a re  to be deduced f r o m  the inner  expansion of (24), 
the r e m a i n i n g  condit ion being the p r e s c r i b e d  wall t e m p e r a t u r e .  

A sui table  d imens ion l e s s  fo rm for  T is 

a 2 2 
T T~ = (T w - T~)Lo(~) + r Mo(~). (25) 

cp 

Substituting in (24) gives 

F 0L~ + ~WK~ = 0, (26a) 

' - F'M o + 1~,2 = 0 (26b) FoM0 o 2~'~- 0 

with L 0 (co) = M o(cx) ) = 0. The functions F o and K o representing the axial 
velocity and current in the inviscid flow have appeared earlier. The para- 
meter W = 2ak/cp(T w - Tin), of the form of an Eekert number, is taken 
to be 0(i). 

Note that non-trivial solutions for Lo, M o are due to the ohmic forcing 
terms in (26). Expanding L o = Loo + /~Lol etc., we have that Loo = Moo = 0 
and 

~erfc 2t 
L01 = W d~ T dt (~ > 0). (27a) 

The sma l l  ~ expansion is 

~ - w  rlog  + d + L01 (27b) 
L J 
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)o log where d = ~, + log4 + 47r'�89 cos t dt = 1.5649. On the other hand 

(26b) s h o w s  that  Mol is  f in i te  at  the o r ig in ,  in f ac t  Mol(0  ) = 2/~r. 
In t e r m s  of i n n e r  v a r i a b l e s  lo(~ ) = Lo(~) , moO7 ) = Mo(~) w h e r e  )9 = ( a /v )~z  

as  b e f o r e ,  equa t i on  (23) r e d u c e s  to the t h e r m a  ! b o u n d a r y  l a y e r  e q u a t i o n s :  

p r ' i l ~  + 2fol ~ + 2~W = 0 ,  (28a) 

pr.lm,, + 2fore , 2f0m ~ + f,,2 + ~k~2 = 0 (28b) 
0 o 0 

with Io(0 ) = i, too(0 ) = 0; f0 is given by (9) and ki is referred to below 
(16c). The basic variables Inc p moo satisfy (28) with /3 = 0 and fo replaced 
by foo or h. The boundary- conditions are io0(0 ) = i, i0o(OO) = moo(0) = 
mo0(Co) = 0. The dimensionless wall heat flux components in the absence 
of a magnetic field are I' (0) and m' (0), the latter being the contribution 

�9 O0 O0 
from viscous dissipatmn. The computed values at Pr = 0. 025(mercury), 
0. 0075 (liquid sodium)are shown in the Table below. 

Equation (27b) shows that a logarithmic stage, /31og(e -i), is already present 
in the 10 series and the expansions are 10 = 1.00 +~log(e-l)l L + ~Ioi + .... 
m o = moo + /3moi + ... The equation for 1 L is 

I" + 2Prhl' = 0 (29a) 
L L 

with 1 (0) = 0 and the matching condition IL(CO ) = �89 deduced from (27b). 
We fiffd that 

1'(0)  = -~WO (29b) 
L 

w h e r e  O = 1' (0), a func t ion  of P r .  Next  we have  
oo 

� 8 9  + h r  = '(%/00 + W) (30a) 
Ol Ol 

with i0~(0 ) = 0, 10a 1 "-- -W(d + log~?) as D--+oo; h, fol are given by (ii). 
It can be shown t 

= (30b) io~(O) o(qw - �88 

w h e r e  q : d ~li_+m [_logr}- 2 P r  S i X ( t ) j T X ' l ( u ) d u  dt~ and X ( t ) =  e x p ( 2 P r  5oh(U)du,. 

The  func t ion  tool i s  g iven  by  

�89 + hm'ol h'moi "(fo~m'oo - f'oxmoo + h"f"o, + 2/=) (3l)  

with moi(0)  = 0 and m o l ( ~  } = 2/7r. The  r e s u l t s  k = -2~r'�89 and M~I(0 ) = 2/re 
and (31) w e r e  i n t e g r a t e d  n u m e r i c a l l y  have  b e e n  u s e d  h e r e .  E q u a t i o n s  (30) lO u 

and the r e s u l t s  a r e  t a b u l a t e d  be low.  
TABLE 

er o = %0(0) 1,'(o)/o loi;o)/o ,%0(0) ,%1(o) 

0. 025 -0 .  1627 - �89 W 2 . 5 5 W -  ~ 0 . 0 1 8 2  0 . 4 6 1  

0.0075 -0. 0925 ~ �89 W 3.15W- �88 0.0057 0.272 

The heat transfer at the wall is given by 

~/a~  ~-7ztr, o) = (T W - T~)0 ~ �89 

a2r2  [ } 
+ ep too0(0) + /~ m01(0) " 

-!)  - q W +  � 8 8  
(32) 
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The Table shows that the second curly bracket in (82) is positive so that 
the applied field increases the dissipative contribution to the heat transfer 
for r > 0. Next, since e = 10 -7 for mercury and i0 ~5 for sodium, the 
first curly bracket also remains positive for all W and we conclude that 
w h e n  ~ l o g ( c  -1) < 0(1) the  a p p l i e d  f i e ld  d e c r e a s e s  the h e a t  t r a n s f e r  at the 
s t a g n a t i o n  p o i n t  0 i t s e l f  and ,  p r o v i d e d  {hat a ~ r 2 / c p ( T w  T.)-.< 0(1),  a l s o  on 
a d i s k  of  r a d i u s  r c e n t r e d  at 0. 

A s  / 3 : i n c r e a s e s  w i t h  the  s t r e n g t h  o f  t h e  a p p l i e d  f i e l d ,  /31og(< < )  = s s a y ,  
will become 0(I) and the 10 series will fail to be asymptotic. Physically 
we can expect s to attain a critical value at which the thermal layer is 
disrupted, in the sense that the heat flux Vanishes at the stagnation point 
and, if dissipation is ignored, along the entire wall. An analogous situation 
with the velocity boundary layer arose in [6]. When s is 0(i) the relevant 
parameter is ~ = i/log(c -~) since ~ is then 0(~), and to find the critical 
value of s We seek a series solution of (26a) and (28a) in terms of g. In 
general a smooth development would require a modified set of equations 
but here this is unnecessary and indeed compatibility with the solution of 
Seetion 2 and the temperature eondition at the wall will not permit a change 
of variables. The dominant term in the i~(0) expansion (I - �89 and hence 
the flux vanishes at 0 when s = 2/W, Alternatively, consider formal series 
of the type 10(N,s ) = T00(~,s ) + cl01(N,s ) etc. Then L00 = 0 as before; 
I00 satisfies the same equation and surface condition as i00 but we must 
insist on the outer condition i00(co) = ~0 where c~ 0 is an 0(i) parameter 
depending on s. It is easily shown that I~0(0 ,s) = (i - c~0)9 and hence the 
flux at 0 remains negative provided that ot 0 < I. Guided by our earlier 
solution (27b) we deduce that L01~-sW(d + log~) = -sW(d + logrT- �89 
in inner variables. The first two terms are the outer expansion of 1 but 

- - 01 - 

the last term remains unmatehed if o~ is zero. Matching i00 with L00 + gL01 
give s 0 

e 0  = 0 + g ( } s W g  "1) and  h e n c e  s : 2 e o / W  < 2 / W .  

rUhe field strenght is therefore limited by the inequality 

ep (T w - Too) 
< 

aXlog(e  -1) 

A s  the  l a t t e r  v a l u e  i s  r e a c h e d ,  the t h e r m a l  l a y e r  s e p a r a t e s  i . e .  the  h e a t  
t r a n s f e r  i s  r e d u c e d  to  z e r o  a t  t he  s t a g n a t i o n  p o i n t  and ,  i f  d i s s i p a t i o n  is  
n e g l e c t e d ,  on the  e n t i r e  w a l l  s u r f a c e .  
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